Samsung Galaxy S22 Plus Display Review: Vision Booster is a Game Changer

Samsung Galaxy S22 Plus Display Review: Vision Booster is a Game Changer

Every year, Samsung loves to show off just how much brighter its new flagships get. Although they’re unquestionably revered as the spearhead in mobile screen technology, the best smartphone displays — in my opinion — haven’t typically been found in Samsung’s own phones. The Korean giant boasts ever-inflating figures for “peak brightness” (which by themselves can be deluding), but the company repeatedly lacked attention in some other areas which set it apart from other phone makers.

This year’s Galaxy 2022 lineup changes things. Join along as we go beyond our Galaxy S22 Plus review and a deep dive into the display on this flagship from Samsung. In case you want just the highlights, here’s the TL;DR:

Samsung Galaxy S22 Plus: Display Overview

  • Outstanding display brightness
    XDA Recommended Award Badge
  • Vastly improved shadow details
  • Excellent tone mapping in most lighting conditions
  • Incredibly consistent white balance
  • Class-leading HDR10 performance
  • Screen resolution should be higher for its price
  • Limited scenarios where the software ramps down to 48 Hz
  • Vision Booster should kick in at a lower brightness

About this review: Samsung sent us a Galaxy S22 Plus for review. They had no involvement in the contents of this review.

Navigate this review:

Hardware & Technology

On the outside, there’s only a minor difference in the looks of the screens between this year’s and last year’s base models. The Galaxy S22 and Galaxy S22 Plus are ever-so-slightly shorter, bringing the aspect ratio down from 20:9 to 19.5:9 while maintaining the same screen and body width.  The bottom bezel also extends down a touch further, making the display bezels truly symmetrical. A hole punch is still resident at the top-center (the correct location), and the screen is flush flat which is nice for those who aren’t a fan of curving displays. At 6.6 inches, the Galaxy S22 Plus also sits at what I feel is a comfortable size for a big phone.

There’s more angular blue shifting on my unit than most of the other flagships, but that’s alright

For the internals, the Galaxy S22 Plus appears to be using the same luminous OLED materials like those found in their previous Galaxy S21 Ultra handset. Samsung is also reusing these materials for the brand new Galaxy S22 Ultra, which means that the Galaxy S22 Plus (not including the smaller model) should share the same excellent luminous output and efficiency as the bleeding-edge model.

Perhaps the most noticeable difference between the Galaxy S22 Plus and the Galaxy S22 Ultra is their screen resolutions. While the Ultra model accommodates a super-sharp 1440p panel, the Galaxy S22 Plus receives only a 1080p display. At 393 pixels per inch, the Galaxy S22 Plus is possibly the most expensive phone currently available with a 1080p PenTile screen. The good news is that 1080p OLEDs have gotten slightly better starting with the Galaxy S21 due to Samsung using a higher subpixel fill factor, which reduces the screen-door effect and eliminated color fringing (to my eyes). Although many people may not notice it in everyday use, these screens just don’t appear as sharp as a 1440p screen or even Apple’s “Super Retina” (~460 ppi) OLEDs. And for its cost, there’s no real excuse for Samsung to not include a higher resolution on a thousand-dollar phone.

One other notable difference is in the OLED backplane material. Samsung is still reserving its LTPO/HOP technology — which allows for lower refresh rates and improved panel drive stability — for its highest-end device. This news stirred up a lot of controversy at launch, where Samsung initially (and misleadingly) stated that the Galaxy S22 and Galaxy S22 Plus varied their refresh rate from 120Hz down to 10Hz. As it turns out (and which I’ll cover later on), the minimum display refresh rate of the phones only goes down to 48Hz due to their LTPS backplane. Just like with screen resolution, this seems like such a stingy decision for Samsung to make since other OEMs (like Google, OnePlus) offer a HOP-equipped display for a lower price.

Vision Booster

Finally, the stand-out feature that Samsung advertises for its new displays (besides higher peak brightness) is something called Vision Booster. What it does, essentially, is dynamically adjust the color tones on the screen to improve image visibility under direct sunlight. This is important since increasing the peak brightness of white isn’t enough to make a picture or a video viewable in bright conditions: if mid-tones and shadows aren’t raised in adequate proportions, then the image will appear blotchy and distorted. Even though Samsung’s phones have had some of the brightest screens in the past, viewing media on these phones wasn’t necessarily the best experience due to poor handling of tone mapping in sunlight. This is a caveat of Samsung phones that I’ve constantly reiterated in past reviews. Vision Booster directly addresses this, and I’m glad to see it.

Color Profiles & Gamut

There are two main color modes available as usual: the Vivid and Natural profiles. The default profile selected out of the box will depend on the region you bought your phone from. Natural mode will provide the best color accuracy for content that is being viewed on the phone. Select Vivid mode if you want a boost in color saturation and bluer whites (~6900 K). Only Natural mode will support content color management, though.

For Vivid mode, it is possible to adjust the color temperature of the white point to be colder or warmer. Under Advanced settings, you can further tune the individual red/green/blue color channels to dial in the color tint. These tuning options are not available for Natural mode, which is a shame since it’s arguably more important for that profile to offer them.

The maximum gamut of Samsung’s OLEDs hasn’t changed much since the Galaxy S10. The Vivid mode extends to the native red and blue purities of the OLED, but slightly constrains the green primary. This native gamut extends just slightly past the standard DCI-P3 primaries, which is targeted to balance color purity with luminous output. Going too saturated would lower power efficiency in an era where consumer content that extends past DCI-P3 is almost non-existent.

Screen Brightness

Screen brightness for Galaxy S22 Plus

Screen brightness for Galaxy S22 Plus

Moving on to screen luminance, our Galaxy S22 Plus ended up measuring almost identically to our Galaxy S21 Ultra in their highest brightness modes. This is no surprise since they share the same luminous material set. The difference is that the Galaxy S21 Ultra only engaged in its peak brightness state when playing back HDR content, and not for normal content under auto-brightness. With the Galaxy S22 Plus, the phone can now also enter this state under auto-brightness, so it’s brighter in practice. Vision Booster should also further assist with screen visibility and content brightness under sunlight, which will be covered in the Tone Mapping section.

The Galaxy S22 Plus has a practical peak brightness of 1100 nits for light-themed apps or 1500 nits for standalone media and HDR highlights

To sum up its performance, the Galaxy S22 Plus reaches a practical peak brightness of about 1100 nits for light-themed apps (80% APL), or about 1500 nits for content within dark-themed apps and HDR highlights (20% APL). At a tiny 1% window size, I was only able to measure a brightness level of about 1600 nits, which is a bit shy of Samsung’s 1750-nit claim. Nevertheless, luminance measurements at this window size are completely frivolous and are attractive purely for marketing.

An option labeled Extra brightness has been added to the display settings to increase the maximum manual brightness of the display. Before the Galaxy S22, Samsung’s phones have only been able to reach a fullscreen luminance of about 400 nits without auto-brightness. With the new option enabled, the manual brightness ceiling moves up to about 700 nits fullscreen.

Display Power of Galaxy S22 Plus, Galaxy S21 Ultra.

Display Power of Galaxy S22 Plus, Galaxy S21 Ultra.

Since the Galaxy S22 Plus removed the auto-brightness limiter, I wondered if Samsung somehow managed to improve its power efficiency over the generation. But as expected, the luminous power consumption curve of the Galaxy S22 Plus is very similar to last year’s Galaxy S21 Ultra. Therefore, the S21 Ultra was likely just as capable as the S22 Plus, and the Ultra was just being artificially limited. This idea is also supported by the iPhone 13 Pro, which used the same luminous OLED materials as the Galaxy S21 Ultra, being able to reach fullscreen brightness levels which surpassed the Galaxy S21 Ultra’s and matching the new Galaxy S22 Plus/Ultra.

Screen Refresh

In the past couple of years, it has now become standard for high refresh rate displays on flagship phones. It allows for a smoother overall user experience, but it comes at the expense of increased battery usage. Companies have been trying to discover ways to minimize its impact, and this is mostly done by tactfully switching the display’s refresh rate to a lower state when a higher one isn’t necessary.

Similar to last year, the entire Galaxy S22 lineup maxes out at a refresh rate of 120Hz. But as stated, only the Ultra phone utilizes an LTPO/HOP backplane, and the Galaxy S22/Plus still uses LTPS. This significantly limits the baseline models’ ability to seamlessly switch between refresh rates since LTPS is much more prone to color shifts when altering its pixel driving rate. Thus, the Galaxy S22 and S22 Plus are only rated down to 48Hz, whereas the Galaxy S22 Ultra can go down to 10Hz.

The Galaxy S22 Plus only ramps down to 48 Hz in limited scenarios

What needs to be better known is that the value reported by Android’s refresh rate indicator is not the OLED’s physical refresh rate. The indicator is more representative of the maximum data rate the SoC can send to the display, where a lower value can hint to the SoC and GPU to move to a lower-power state. Furthermore, the SoC doesn’t send any repeat frames to the display thanks to Panel Self Refresh; if the screen is idle, both the data rate and the HWC rendering rate are essentially zero (0) Hz. In this case, the screen refreshes the data on its own from the last frame stored in memory.

Using a Quarta-Rad Radex Lupin flicker meter paired with its RadexLight software, I’m able to measure and detect the true refresh frequencies of a display. With this instrument, I found that the Galaxy S22 Plus’s minimum refresh is indeed 48Hz (while Android’s refresh indicator reads 24Hz), but it can only ramp down to it in limited scenarios; that is: if the display is above 33% of system brightness and if the ambient lighting is above 200 lux. Both these conditions must be satisfied for the refresh rate to settle down when the screen is idle. A system brightness of 33% correlates to a white level of about 100 nits on the Galaxy S22 Plus, which isn’t that bad of a constraint. But the 200 lux limitation, which is approximately the light level of office building lighting, pretty much means the 48 Hz will only trigger during the daytime. Even most people’s homes aren’t this well-lit, usually hovering around 50 lux.

Technology Android